Recently there has been a spate of talks, press releases, and articles about the absurdity of the $1000 human genome, e. g., Cancer, Data and the Fallacy of the $1000 Genome. No doubt this has contributed to the somewhat muted response to Life Technologies announcement that they will attempt to win the Archon Genomics X Prize using the Ion Torrent Proton platform. While I agree that talk of the $1000 human genome is irrelevant, it's not for the same reason as everyone else. Most people cite sequence analysis costs, not typically included in the $1000 per genome estimate, as the reason that talk of a consumables-only $1000 genome is not relevant. That is a red herring (but more on that later). The real reason that the $1000 human genome is no longer interesting is because, for all intents and purposes, we have already achieved the $1000 human genome. "What?!?" you say, "a human genome costs $5000 to sequence!" Sure, you're right, but that is just details. Compared to $1 billion (the approximate cost of the first human genome), the difference between $1000 and $5000 is rounding error. The reality is that the current cost of sequencing a human genome is well within the cost of diagnostic tests in common use in health care. From another perspective, the cost of sequencing a human genome has fallen into the range of an expensive vacation, i. e., there are people who at present are getting their genomes sequencing for recreational purposes. So, congratulations, we did it!

Now, what of all this talk of $1 million or $100,000 to analyze the sequence data from a human genome? Does analyzing sequence data from a single human genome cost that much? Well, it certainly can, but it need not. And particularly for the clinical market, it certainly won't and it is preposterous to posit that it will. The confusion arises from people failing to distinguish between research and clinical analysis. While research projects on cancer are trying to better understand cancer, to expand our knowledge of the disease, the clinical application of genome sequencing to cancer, or any other disease for that matter, will be focused on improving diagnosis and treatment. The current reality is that we know precious little about how the genome works; and the ability to translate this information into improved diagnosis or connecting that diagnosis to a treatment is even less. In other words, the amount of actionable information one gets from the genome or transcriptome sequence is relatively small compared to the massive amount of presently uninterpretable information. Cancer research and more fundamental investigations into how the genome works (e. g., ENCODE) will expand our knowledge and potential actions over time, but for now there are only dozens to hundreds of possible actionable outcomes. Bottom line, the amount of analysis to convert genome sequence into these possible actions should not cost more than $100. So if you are a real stickler on getting the total cost of sequencing and analysis of a clinical human genome below $1000 (or less than one-third what Myriad charges to assay a few genes in their BRCA test), we just need to get the cost of sequencing less than $900 and we're there.

This all is not to say that the cost of sequencing and analyzing a human genome does not matter; it most certainly does. In research, reducing the cost by a factor of two means you can double the number of samples you are able to sequence; potentially greatly increasing the power of your study. So we must continue to strive to reduce costs, but like I said, for all intents and purposes we have already hit an amazing milestone. So enjoy your weekend, you deserve it.